

Innovative ICT Solutions for the Societal Challenges

Information and Communications Technologies (ICT) applications in transport sector

Tibor KOLOS

kolos@sze.hu

Szechenyi Istvan University Győr Faculty of Engineering Sciences Hungary

28/04/2016 Zagreb

Agenda

- ICT and ITS
- ICT and car development
- ITS standardization
- Parameters of wireless communications in ITS
- Wireless communications in ITS
 - IEEE 802.11p
 - Public mobile phone networks
 - RFID based systems
 - •

ICT

- ICT stands for "Information and Communication Technologies."
- It's an "umbrella" term!
- Refers to technologies that provide access to information
- The access is realised through **telecommunications**
- ICT includes
 - Internet, wireless IP networks
 - Mobile phone systems (2G...5G)
 - DAB, DVBT.....etc., etc

ICT

- ICT in different context:
 - ICT in entertainment
 - ICT in education (distance learning)
 - ICT in health care
 - ICT in intelligent building management
 - •
 - ICT in traffic management
- Impact of ICT:
 - Improve business (home banking, hotel booking......)
 - Economical, environmental
 - Effect society (real time communications, Facebook, etc.).....

- ITS stands for "Intelligent Transport System"
- ITS = Traffic systems + ICT
- ICT changes the tranport sector, like maritime, aviation, railways, road transport
- Advantages of application of ICT in road transport:
 - increasing efficiency,
 - reliability and
 - safety and
 - reducing energy consumption

The problem

What about.....

- Travel safety???
- Reliability????
- Efficiency???
- Environmental impact???
- •

Accidents

- Over 40 000 road fatalities per year in Europe
- More than 1.25 million injuries! [ETSI]
- Main reason of accidents: human failure
 - Failure to recognize a hazard in time
 - Error in judgment
 - Error in operation

DREAMSCITY.NET

If you want to travel...

You need a

- Car
- Traffic infrastructure
 - Road network
 - Petrol stations
 - ICT support (motorway traffic control, smart traffic lamps, GPS)

If you want to travel...

You need a

- Car
- Traffic infrastructure
 - Road network
 - Petrol stations
 - ICT support
 - •
- Driver

The driver

The driver

The driver

The dream

Driverless car

(autonomous car, self-driving car, robotic car),

- Substitute the driver by computer, sensors, etc.
- Reconstruct the infrastructure
- Car -to-Car and Car-to-Infrastructure Communications

An experiment

• Google driverless (self-driving) car

Steps of the car development

- The aim of **car developments**: to produce a
 - driver support system (basic and advanced),
 - later an intelligent car (driverless car)
 which can cooperate with Intelligent Transport System (ITS)

Steps of the car development (2014)

Estimations (in 2014):

- ~2016 Partially automated
 - Anti collision radar, parking system (legal problem!)
 - Toll collection, E-call, stolen car info....
 - No communications among vehicles!
- ~2020 Highly automated
 - Advanced Driver Assistance (Texas Instr.)
 - Camera-based and radar-based assistance
 - Communication among vehicles
- >2025 Fully automated

Steps of the car development (2014)

Steps of the car development

Autonomous car forecasts (2015)

- Toyota: 2020 (<u>Wired.com</u>, 2015-10-08)
- Ford: 2020 (<u>Forbes</u>.com, 2015-02-09)
- Audi A8: 2017 (motoring.com.au/)
- Nissan: 2020 (<u>Nissan Motors</u>, <u>Forbes.com</u>,)
- Uber fleet to be driverless by 2030 (Mobility Lab, 2015-08-18)

Intelligent Transport System

Development of ITS

Intelligent Transport System (ITS)

- Set of communication related applications
 - mainly wireless system based applications
- The aim of ITS: to increase
 - Travel safety
 - Reliability
 - Efficiency
 - Quality

Intelligent Transport System

- Based on **cooperation** of vehicles (M2M)
- No centralized control!
- Participants
 - have own identity code
 - form ad-hoc telecommunication networks
 - Change information about their
 - position, direction, emergency, warnings.....
- Problem: **security**, human rights....

Intelligent Transport System

- Technically
 - based on SRD devices
 - SRD: Short Range Devices
 - Communication range: nx10m....nx100m
 - excluding public mobile network based services
 - For example: e-Call
- SRD:
 - high amount of radio equipment operate
 - on limited area
 - on limited frequency band >>> interference!

ITS standardization

- International Telecommunication Union, ITU
 - <u>http://www.itu.int/en/Pages/default.aspx</u>
- European Telecommunications Standards Institute (ETSI)
 - <u>http://www.etsi.org/standards</u>

Downloading standards—free of charge!!!!!

- We are focusing on **road traffic**!
- ITS applications:
 - Road safety applications
 - Non safety applications
 - On demand services applications
- ITS standardizes
 - Communications demands,
 - Applications
 - Not technology!!!!

Communications in ITS

- Vehicle-to-vehicle (V2V; C2C)
- Vehicle-to-Infrastructure (V2I;C2I)
- Infrastructure -to-Vehicle (I2V;I2C)
- Infrastructure-to-Infrastructure (I2I;I2I)
- Message type:
 - Dedicated
 - Broadcasted

Car-to Car communications

ETSI TR 102 638 technical report

TR 102 638

Intelligent Transport Systems (ITS);

- Vehicular Communications; Basic Set of Applications; Definitions
- ITS application: system that *defines and implements an ITS service* to users of the system
- **ITS use cases:** *procedure* of executing an application in a particular situation with a specific purpose

Applications

Classes of applications (ETSI TR 102 638):

- Cooperative road safety
 - The aim is to improve the road safety
 - (with secondary benefits)
- Cooperative traffic efficiency
 - The aim is to improve the traffic fluidity
- Cooperative local and global internet services
 - Advertisements, on-demand information

Simplified ITS environment

Basic Set of Applications 1

Applications Class	Application	Use case	
Active road safety	Driving assistance -	Emergency vehicle warning	
	Co-operative awareness	Slow vehicle indication	
		Intersection collision warning	
		Motorcycle approaching indication	
	Driving assistance - Road	Emergency electronic brake lights	
	Hazard Warning	Wrong way driving warning	
		Stationary vehicle - accident	
		Stationary vehicle - vehicle problem	
		Traffic condition warning	
		Signal violation warning	
		Roadwork warning	
		Collision risk warning	
		Decentralized floating car data - Hazardous location	
		Decentralized floating car data - Precipitations	
		Decentralized floating car data - Road adhesion	
		Decentralized floating car data - Visibility	
		Decentralized floating car data - Wind	

Basic Set of Applications 2

Applications Class	Application	Use case	
Cooperative traffic	Speed management	Regulatory / contextual speed limits notification	
efficiency		Traffic light optimal speed advisory	
	Co-operative navigation	Traffic information and recommended itinerary	
		Enhanced route guidance and navigation	
		Limited access warning and detour notification	
		In-vehicle signage	
Co-operative local	Location based services	Point of Interest notification	
services		Automatic access control and parking management	
		ITS local electronic commerce	
		Media downloading	
Global internet services	Communities services	Insurance and financial services	
		Fleet management	
		Loading zone management	
	ITS station life cycle	/ehicle software / data provisioning and update	
	management	Vehicle and RSU data calibration.	

ITS use case (example1)

- Application class: Active road safety
- Application name: Road hazard warning.
- Use case: Emergency electronic brake lights

ITS use case (example2)

- Application class: Active road safety
- Application name: Co-operative awareness.
- Use case: Emergency vehicle warning

ITS use case (example3)

- Application class: Active road safety
- Application name: Co-operative awareness.
- Use case: Slow vehicle warning

Slow Vehicle Warning

ITS use case (example 4)

- Application class: Active road safety
- Application name: Road hazard warning.
- Use case : Stationary vehicle warning

Parameters of wireless system

- Technical parameters of wireless communications are determined mainly by *use case* requirements
 - Amount of data to transmit
 - Latency (delay)
 - Frequency of periodicity
 - Broadcasted or dedicated message
 - Location (positioning) accuracy
 - •

Optimistic deployment roadmap

• ESA: Enhenced set of Applications

•

Technical characteristics of ITS

- ITS in Europe is based on *IEEE 802.11p*
- Standardization: ETSI ES 202 663
- This standard defines ITS-G5 parameters
- Frequency bands for applications:
 - ITS-G5A: 5.875 to 5.905 GHz safety related
 - ITS-G5B: 5.855 to 5.875 GHz non-safety related
 - ITS-G5C: 5.470 to 5.725 GHz

There are available other systems also!

Characteristics of transmission scheme

Channels		Centre frequency	Name	Tx power limit (EIRP)	Default data rate		
	ITS-G5A ITS-G5B	5 900 MHz	G5CC – control channel	33 dBm	6 Mbit/s		
		5 890 MHz	G5SC2 – service channel 2	23 dBm	12 Mbit/s		
		5 880 MHz	G5SC1 – service channel 1	33 dBm	6 Mbit/s		
		5 870 MHz	G5SC3 – service channel 3	23 dBm	6 Mbit/s		
		5 860 MHz	G5SC4 – service channel 4	0 dBm	6 Mbit/s		
Channel bandwidth	10 MHz						
Modulation scheme	OFDM with channel access CSMA/CA (see IEEE 802.11p)						
Available data rates	3/4.5/6/9/12/18/24/27 Mbit/s						

*CSMA/CA = Carrier Sense Multiple Access/Collision Avoidance

Mobile network based ITS services

- E-call system (emergency call system)
- Uses existing mobile networks (112 or 911)
- Manual or automatic operation
- Location system is needed!
- Stolen car report (GPS+GSM)
- The future: 5G (Ericsson!)

RFID based ITS services

- RFID stands for *Radio-Frequency IDentification*
- General RFID applications:
 - pay pass bank card, passport, ID, access management
 - transportation payment (on the bus),
 - tracking goods (in chocolate factory)

• **RFID** applications in ITS:

- Toll collection system
- Engine immobilizer
- Parts of RFID system:
 - RFID reader (RSU, road site ur
 - RFID tag (OBU, onboard unit)

Frequency bands for RFID applications

- 125 kHz animal ID
- 13.65 MHz logistics, antitheft systems, NFC, Near Field Communications
- 860 MHz logistics, electronic toll collection
- 920 MHz logistics electronic toll collection
- 2.4 GHz logistics, electronic toll collection
- **5.8 GHz** logistics, electronic toll collection

RFID system

- RFID reader
- RFID transponders (RFID tags)
 - Very cheap!

RFID tag

- Passive (Low sensitivity, but no battery!!)
- Active (High sensitivity, battery is needed!)
- Battery Assisted Passive (BAP)
 - Battery supply for the microcontroller

RFID link budget

RFID parameters

- Standard: ETSI EN 302 208-1
- Interference with GSM-R downlink
- Reader:
 - 865 MHz to 868 MHz ERP: max. 2W (continuous)
 - 915 MHz to 921 MHz ERP: max. 4W (not cont.)
 - (ERP depends on antenna beam width!)
 - ERP = Equivalent Radiated Power >>> ERP = $P_{TX}^*G_A$
- Tag sensitivity:
 - Passive: about -9 dBm
 - Battery assisted passive: -28 dBm [EM MICROELECTRONIC]

Thanks for the attention!

Co-funded by the Erasmus+ Programme of the European Union

- sociallab.education/innosoc
- facebook.com/innosoc
- twitter.com/innosoc

This document has been prepared for the European Commission however it reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.